ADSTRACT Zero Discharge Ash Handling System Costs and Their Sensitivity to Unit Retirement and Ash Make Rate The U.S. Environmental Protection Agency (EPA) published 40 CFR 423, Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point Source Category to the Federal Register in November 2015. The guidelines provide new discharge limitations for wastewater streams formerly categorized as low-volume wastewater. The most significant impact of the proposed changes will be to require coal-fired power plants that discharge bottom ash transportation water to eliminate the discharge. In addition, on April 17, 2015, the EPA published the Final Rule for Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule) at 40 CFR Part 257. The CCR Rule applies to owners and operators of new and existing landfills and new and existing surface impoundments (ponds). The CCR Rule requires **Bottom Ash from** groundwater monitoring of existing active CCR ponds. If groundwater monitoring demonstrates exceedance of a groundwater protection standard, the owner/operator must initiate corrective action. Corrective action can include closing the pond within five years of detecting groundwater impacts. Because of the synergy between the ELG and CCR rules, the potential strategies for complying with ELG need to be evaluated in conjunction with the impacts to the existing ponds subject to CCR. Coal-fired plants that are sluicing their ash to ponds may be required to eliminate both bottom ash transport water discharge and to close the associated ponds. In these applications, a stepwise approach to compliance is **To/From Unit Ash Sluice Systems** required to first eliminate ash sluicing prior to closure of the ash ponds. Possible technologies to comply include mechanical drag chain systems (under-boiler and recirculating remote), recirculating through CCR-compliant ash ponds, recirculating ash settling basins, and recirculating through geotextile filter tubes. The selection of the technology to be applied must be the most economical for the plant given the challenges facing coal-fired power plants today. Using a series of power plant case studies common to each technology, this paper compares the relative sensitivity of each technology's capital and operating costs, on a present-value revenue requirement basis, to important variables, such as plant life and bottom ash make rate. **RSDCC** Title: Zero Discharge Ash Handling System Costs and Their Sensitivity to Unit Retirement and Ash Make Rate Authors: Matthew K. Heermann and Nicholas P. Vrkljan Sargent & Lundy, LLC, Chicago, IL | Ash
Settling Tank
(AST) | Geotextile
Filter
Tube
(GFT) | CCR-Compliant Pond (POND) | Under-Boiler Submerged Dragchain Conveyor (UBSDCC) | Remote Submerged Dragchain Conveyor (RSDCC) | |---|---|--|--|--| | 2 x 100%
ash
settling tanks | N+1 100% GFT
bays,
one for each GFT
required, with one
common spare | Pond sized to contain ash for entire evaluation period without dredging (i.e. remaining life of plant) | 1 x 100%
UBSDC
under
each boiler | 2 x 100% RSDCC sized to dewater entire ash make rate | | Reuse
existing ash
sluicing pumps | Reuse
existing ash
sluicing pumps | Reuse
existing ash
sluicing pumps | Ash sluicing pumps are not required (demo) | Reuse
existing ash
sluicing pumps | | Water recycle pumps and bays | Water recycle pumps and bays | Water recycle pumps and bays | Water recycle pumps are not bays | Water
recycle
pumps | | Electrical
building | Electrical
building | Electrical
building | Motor starters reuse existing MCCs | Electrical
building | | High TSS sump
pumps | Ash distribution header | | | Surge tank | | Decant valve | Hoses | | | Settling tank | | Dewatering apron | | | Concrete ash storage bunker 72 hour capacity | | **5 YEAR EVALUATION PERIOD** @ 2 TONS PER HOUR **20 YEAR EVALUATION PERIOD** @ 2 TONS PER HOUR 5 YEAR EVALUATION PERIOD @ 6 TONS PER HOUR **20 YEAR EVALUATION PERIOD** @ 6 TONS PER HOUR YEAR EVALUATION PERIOR @ 30 TONS PER HOUR Sargent & Lundy, LLC Chicago, IL 60603 312-269-2000 **Belt Conveyors** **UBSDCC** Haul Truck to Disposal Site | Ash
Settling Tank
(AST) | Geotextile
Filter
Tube
(GFT) | CCR-Compliant
Pond
(POND) | Under-Boiler
Submerged
Dragchain
Conveyor
(UBSDCC) | Remote
Submerged
Dragchain
Conveyor
(RSDCC) | | | |-------------------------------|---------------------------------------|---------------------------------|--|---|--|--| | Sargent & Lundy | TenCate | Sargent & Lundy | Allen-Sherman-
Hoff | Allen-Sherman-
Hoff | | | | | | | United Conveyor
Corporation | United Conveyor
Corporation | | | | | | | Clyde Bergmann | Clyde Bergmann | | | | | | | GE-Alstom | GE-Alstom | | | | | | | Howden | Howden | | | Technology Technology